3x(x-3)+22=2x^2+4(x-5)

Simple and best practice solution for 3x(x-3)+22=2x^2+4(x-5) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x(x-3)+22=2x^2+4(x-5) equation:



3x(x-3)+22=2x^2+4(x-5)
We move all terms to the left:
3x(x-3)+22-(2x^2+4(x-5))=0
We multiply parentheses
3x^2-9x-(2x^2+4(x-5))+22=0
We calculate terms in parentheses: -(2x^2+4(x-5)), so:
2x^2+4(x-5)
We multiply parentheses
2x^2+4x-20
Back to the equation:
-(2x^2+4x-20)
We get rid of parentheses
3x^2-2x^2-9x-4x+20+22=0
We add all the numbers together, and all the variables
x^2-13x+42=0
a = 1; b = -13; c = +42;
Δ = b2-4ac
Δ = -132-4·1·42
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1}=1$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-13)-1}{2*1}=\frac{12}{2} =6 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-13)+1}{2*1}=\frac{14}{2} =7 $

See similar equations:

| x/21.8=5.3 | | 2(x-3/1)/3-(x-2/1)/4=1/1 | | X-5/3=4x+1/4 | | 2x-1/3=x-2/3 | | 4x=20=10 | | x+0,5x+x-5=70 | | 2(x+3)=6x+5 | | (2x^-4)+(3x^-2)=0 | | (7x^2)-6x+18=0 | | 3(x^2+4)+5x=2x^2+6(x+3) | | 9u^2+14=0 | | 3x(x-2)=x(2x-3) | | 5x-(3x-x)=x-4 | | 5×n-3=12 | | (2(x)-7)=25 | | 3y-5=-3 | | 6x+5=12x | | y-0.1y-(y-0.1y)*0.09=200000 | | 4y+25=y | | 18t^2=50 | | 19-9x=40+x | | 8x^2+31x-45=0 | | 14-3y=2(2y+4) | | a÷5+6=13 | | 7−3x+3+8x= | | 7x^2+4=3x^2+328 | | 12x-48=10x-60 | | (y-5)^2=121 | | (X+8)(x=10) | | 7(9-x)-8x(9-x)=0 | | 3b+4=-4+4b | | 1.4-1.6(t*6)=4.6 |

Equations solver categories